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LETTER TO THE EDITOR 

A hierarchy of coupled Burgers systems possessing a 
hereditary structure 

Wen-xiu Ma 
CCAST (World Laboratory) PO Box 8730, Beijing, 100080. People's Republic of China 
and Institute of Mathematics, Fudan University, Shanghal200433, People's Republic of 
ChinaT 

Received 1 September 1993 

Abstxact. A hierarchy of typical integrable,, coupled Burgers systems is proposed by intro- 
ducing a special spectral problem involving q dependent variables ua. U,, . . . . U?-, . These 
systems possess a hereditary structure and may reduce to a hierarchy of Burgers equations 
under the reduction u,=O,O<i<q-~2. It is shown that their flows and Lax operators 
commute mutually but each system is not Hamiltonian. 

After the famous AKNS paper [I], many nonlinear systems of evolution equations inte- 
grable by the use of the inverse scattering transform techniques have been presented. 
Part of these systems possess Hamiltonian structures and an infinite number of symmet- 
ries and conserved densities. Moreover, the symmetries and the conserved densities are 
related to each other through the Hamiltonian structures. This class of integrable sys- 
tems is very large and appears in various fields [2,3]. However, there also exist nonlinear 
integrable systems which do not possess Hamiltonian structures but have an inhite 
number of symmetries. For example, Burgers equation &=U, fuu,. They belong to 
the other class of integrable systems in which only a few examples are found. 

In the present letter, we would like to provide new integrable systems for the second 
class. We propose a hierarchy of coupled Burgers systems from a special spectral prob- 
lem. This hierarchy possesses a hereditary structure and may reduce to a hierarchy of 
Burgers equations under some reduction, which is similar to coupled Kdv  systems [4] 
and coupled Harry-Dym systems [SI. But here Lax pairs cannot give a construction of 
the associated Hamiltonian structures and Hamiltonian functions. Moreover, we fail 
to constrnct Darboux transformations [6] of the corresponding hierarchy. 

Let us now consider the spectralproblem with the potential U = (UO, u1 , . . . , U,- L ) ~ :  

I w h e r e A = u o ~ - ' 4 - L ) + u I ~ - ( q - 2 ) +  :.. + U , - ~ L -  + u q - l - A , q > l ,  andthe nj, l a j s 3 ,  
are 2 x 2 Pauli matrices. This spectral problem is found while studying coupled KdV 
systems. The spectral problem (1) is a particular case of the general scheme with an 
SL(2, C )  spectral operator depending polynomially on 2. and X I .  Interestingly, associ- 
ated with the spectral problem (l), there exists a hierarchy of coupled Burgers systems, 
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which possesses a hereditary structure. Usually, the search for new hereditary symmet- 
ries [7]  is a difficult thing. Here, by the way, we present a new hereditary symmetry @. 
In what follows, we exhibit carefully the concrete construction process. 

According to the generating scheme in [SI, we first find a solution to the adjoint 
representation equation V, =[U,  V ]  of (1). Set 

At this moment we see that V ,  =IU, Y ]  is equivalent to 

B i , = - A ( B ~ - B , ) + ( B , + B , )  

B2,=2B? -2ABt -281 

B3,=2ABi -2Bi -2B3. 

The equations (3b) and (3c) lead to 

( B 2 + B 3 ) x = - ~ 4 B ~  + 2 ( B z - B > )  

(E2 -B3),= -4ABi +2(Bz + B , ) .  

By comparing (3a) with (4b), we can make a possible choice 

B2 + B ~ = B I , + ~ A B I  B -! 

BZ = h . + ( A +  l )B l  3 - z B i x + ( A - I ) B i .  -1 

1 - 2 ( B z - B 3 )  

or equivalently 

Now (40) requires a constraint 

(E2 + E 3 ) ,  = 2( ia2+  aA)BI = 0. 

We can further assume that 
m m 

BI = biLni= 1 b;[u]L-'. 
i-0 i=0 

Then we can calculate that 
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Here and in the following we suppose that bi=O, i < O .  To obtain a solution of (6), we 
choose e, =constant, ci =0, i<q- 1, by which we obtain a recursive formula for b;: 

bo = a  =constant. bj =uObj-, +ulbi--(q--l) + . . . +uq-,b,-l + 5bi-1,x 

The functions b; are all polynomials in U, U,, . . . . For example, we have 

(8) 
1 i2 1. 

2 b, =a+ I b Z = a ~ q - 2 + a ~ q - ~  + f a u , - ~ . , .  

By now we acquire a solution of V, = [U, V ]  : 

= Bl U+ 4Bl,al (9) 

with 
m 

BI = b j X '  
i=0 

where bis are determined by (8). 

[SI. let us choose 
Next we discuss Lax pairs and the corresponding integrable systems. According to 

where Vis given by (9), the A, =A,(& &) are supposed to be a Laurent polynomial 
form of A and the sign+denotes the selection of non-negative powers of 1. Similarly, 
the zero curvature conditions 

U,- VL?+[U, V'"']=O m>O 

of Lax pairs 4x = U$, 4* = Vcm)4, m 20, may engender that 
m 

V\=)(1) = (1?'Bi)+ = bjX"". m>O 

v:=)(a) = i v\?(a) + ( A  + I )  vV(a) 
@'(a) = &-!?(a) + ( A  - 1) vl='(n) 

i-0 

ma0 

m>O 

and the constraint 
~~ A,  = ( f a 2 +  aA)vIm)(a) m>O. ; 

The equality (11) means just that the modified quantities A, take the form 

A, =(AmBi )+ U -  (1,Bi U) + m>O. 

Further by using (S), we have 

(ta+A)(L'"Bc)+= ~2'-(q-1'+b,+i-a2,m+1; 
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Thus by (12) and ( l l u ) ,  we acquire a hierarchy of systems of evolution equations 
9-2 

j = O  
ut=Km=a(uobm, ~obm-i+~ibm, .  . . , 1 u,bj+m-<q-m,bm+l)r m>O (14) 

which possess Lax operators 

I y'" = [ (a"'&) + 4(am2mglx)+ + ( A +  i)(amBl)+ 
i ( a m m  + + ( A  - i)(amZ"BI )+ -(L'"Bi)+ 

= , ( ~ ~ B ~ ) + u + ~ ( ~ ~ B ~ ~ ) + Q ~  m>O. (15) 
We observe (14) a little more and then find that K,,,=@K,-I, m20,  where the 

operator CP reads as 

0 0  . . .  0 Po 

@= [: 0 0 1 ... ..I.; O L P ,  0 -] (16) 

0 0 . . .  1 P,-, 
1 with P , = a u , a - ' , O ~ i ~ q - 2 , P , - ' = i a + a u , - , a - ! .  Therefore (14) may be written as 

u , = K m = @ K m - ] =  _ _ _  =@mKo=@m(uux) m>O. (17) 

@[K, S]+ [@K, @SI -@{[K,  @SI +[@K, SI} =o 
A direct computation can give that @ is a hereditary symmetry [7]: 

(18) 

where the commutator of vector fields is defined as [K,  S ] = K ' [ S ]  - S ' [ K ] .  Therefore 
(14) possesses a hereditary structure. Besides, we easily find that the Lie derivative of 
@ with respect to & = au, takes zero, i.e. 

L K , @ = W [ K O ] - [ K ~ ,  @]=a. (19) 
Hence the tensor operator @ = @(U) is to be invariant along the trajectories of the vector 
field KO [9]. Now according to the result of  [lo] or [7, 11, 121, it follows from (18) and 
(19) that CP is a common recursion operator (or strong symmetry) of the whole hierarchy 
(17) and that 

[&, K,,] = [am&, @"KO] = (m -n)(L,@)@"+"-'& =o m,n>O. (20) 

It follows that the flows of the hierarchy (17) commute mutually and that each system 
in the hierarchy (17) possesses an infinite number of symmetries {&,}:=D. 

Let us recall the products of Lax operators Y") proposed in [ 131 : 

[ y C m ) ,  y(")]= y(mh[Kn 1- p ) , [ K _ ] + [ y ( m ) ,  y W ]  m,n>O. (21) 

Through the general algebraic structure of zero curvature representations in [13], we 
see that 

m, n>O. (22) U~K, , , ,K .J -~P) ,  v(q,+[u,5v (4 , y ( n )  ]]=a 
Therefore from (ZO), we find that the i[ Vcml, V'")]], m, n>O, satisfy the adjoint represen- 
tation equation 

[P), v ( ~ , = [ u ,  v ( q ]  m, n>O. (23) 
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In addition, we can immediately verify that for the spectral operator Ugiven by (I), if 
a matrix V= V(u ,  .A) depending polynomially on A and A-' satisfies the adjoint represen- 
tation equation V,  =[U,  VI and Vl,=o=O, then we have V=O. This property is univers- 
ally applicable to only a few spectral problems. Now by the property, we obtain a 
commutative Lax operator algebra 

Conversely, we may first show (24) by direct calculation. Then from~(22) and the 
injection of U', we may also obtain the commutative property of flows of (17). This is 
an application of Lax operator algebras 1141. In fact, (24) implies the commutative 
property of flows. 

p - 1 ,  V'"']=O m, n>O. (24) 

Making the reduction ui=O, O<f<q-2, we see that (17) reduces to 

~ q - t , , = P Y - l  ( a u 9 - d  m>O (25) 
which is exactly a hierarchy of Burgers equations. Therefore we call (17) coupled 
Burgers systems. Particularly when q =  1, we obtain only a hierarchy of Burgers equa- 
tions. Because (25) does not possess Hamiltonian structures, the hierarchy (17) belongs 
to the second class of typical integrable systems. The first nonlinear system of (17) 
reads as 

( ~ O U q - l ) z  

U O X +  (U1 U , - l b  

ut= @(nu,) = a [ uq-j,x+(uq-2uq-l)x 1. 
Uq-2, .  + zuq- l,.<.X + 2%- 1%- 1 1  

This system can be expressed as 
2 

uq-2 + ;Uq- uq-1 

u,=aJGo=a . 
a _ _ .  o o 

U 0 ~ q - t  

Here J is a Hamiltonian operator. However, (6)' #GO and thus GO is not a gradient 
vector field. This also shows that the system (26) doq not have local Hamiltonian 
structures. 

This work was supported by the National Natural Science Foundation of China and 
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